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Preface for the
Fourth Edition

We started Media Computation in the of Summer 2002, and taught it for the first time
in Spring 2003. It’s now over ten years later, which is a good time to summarize the
changes across the second, third, and fourth editions.

Media Computation has been used successfully in an undergraduate course at Geor-
gia Tech for the last dozen years. The course continues to have high retention rates (over
85% of students complete the class with a passing grade), and is majority female. Both
students and teachers report enjoying the course, which is an important recommendation
for it.

Researchers have been studying Media Computation in a variety of contexts. The
University of Illinois-Chicago had the first Media Computation paper outside of Geor-
gia Tech, and they showed how switching to MediaComp improved their retention rates
in classes that were much more diverse than those at Georgia Tech [43]. The Univer-
sity of California-San Diego adopted Media Computation as part of a big change in
their introductory course, where they also started using pair-programming and peer
instruction. Their paper at the 2013 SIGCSE Symposium won the Best Paper award,
and showed how these changes led to dramatic improvements in student retention, even
measured a year later in the Sophomore year [42]. It’s been particularly delightful to see
Media Computation adopted and adapted for new settings, like Cynthia Bailey Lee’s
creation of a MATLAB Media Computation curriculum [41].

Mark wrote a paper in 2013, summarizing ten years of Media Computation research.
It is clear from that research that Media Computation can improve retention. Our
detailed interview studies with female students supports the claim that they find the
approach to be creative and engaging, and that’s what keeps the students in the class.
That paper won the Best Paper award at the 2013 International Computing Education
Research (ICER) Conference [39].

HOW TO TEACH MEDIA COMPUTATION
Over the last 10 years, we have learned some of the approaches that work best for
teaching Media Computation.

• Let the students be creative. The most successful Media Computation classes
use open-ended assignments that let the students choose what media they use.
For example, a collage assignment might specify the use of particular filters and
compositions, but allow for the student to choose exactly what pictures are used.
These assignments often lead to the students putting in a lot more time to get just
the look that they wanted, and that extra time can lead to improved learning.

xiii
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• Let the students share what they produce. Students can produce some beautiful
pictures, sounds, and movies using Media Computation. Those products are more
motivating for the students when they get to share them with others. Some schools
provide online spaces where students can post and share their products. Other
schools have even printed student work and held an art gallery.

• Code live in front of the class. The best part of the teacher actually typing in code
in front of the class is that nobody can code for long in front of an audience and
not make a mistake. When the teacher makes a mistake and fixes it, the students
see (a) that errors are expected and (b) there is a process for fixing them. Coding
live when you are producing images and sounds is fun, and can lead to unexpected
results and the opportunity to explore, “How did that happen?”

• Pair programming leads to better learning and retention. The research results on
pair programming are tremendous. Classes that use pair programming have better
retention results, and the students learn more.

• Peer instruction is great. Not only does peer instruction lead to better learning
and retention outcomes, but it also gives the teacher better feedback on what the
students are learning and what they are struggling with. We strongly encourage
the use of peer instruction in computing classes.

• Worked examples help with creativity learning. Most computer science classes do
not provide anywhere near enough worked-out examples for students to learn from.
Students like to learn from examples. One of the benefits of Media Computation
is that we provide a lot of examples (we’ve never tried to count the number of for
and if statements in the book!), and it’s easy to produce more of them. In class,
we do an activity where we hand out example programs, then show a particular
effect. We ask pairs or groups of students to figure out which program generated
that effect. The students talk about code, and study a bunch of examples.

AP CS PRINCIPLES
The Advanced Placement exam in CS Principles1 has now been defined. We have
explicitly written the fourth edition with CS Principles in mind. For example, we show
how to measure the speed of a program empirically in order to contrast two algorithms
(Learning Objective 4.2.4), and we explore multiple ways of analyzing CSV data from
the Internet (Learning Objectives 3.1.1, 3.2.1, and 3.2.2).

Overall, we address the CS Principles learning objectives explicitly in this book as
shown below:

• In Big Idea I: Creativity:

• LO 1.1.1: . . . use computing tools and techniques to create artifacts.

• LO 1.2.1: . . . use computing tools and techniques for creative expression.

1http://apcsprinciples.org
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• LO 1.2.2: . . . create a computational artifact using computing tools and techniques
to solve a problem.

• LO 1.2.3: . . . create a new computational artifact by combining or modifying
existing artifacts.

• LO 1.2.5: . . . analyze the correctness, usability, functionality, and suitability of
computational artifacts.

• LO 1.3.1: . . . use programming as a creative tool.

• In Big Idea II: Abstraction:

• LO 2.1.1: . . . describe the variety of abstractions used to represent data.

• LO 2.1.2: . . . explain how binary sequences are used to represent digital data.

• LO 2.2.2: . . . use multiple levels of abstraction in computation.

• LO 2.2.3: . . . identify multiple levels of abstractions being used when writing
programs.

• In Big Idea III: Data and information:

• LO 3.1.1: . . . use computers to process information, find patterns, and test
hypotheses about digitally processed information to gain insight and knowledge.

• LO 3.2.1: . . . extract information from data to discover and explain connections,
patterns, or trends.

• LO 3.2.2: . . . use large data sets to explore and discover information and knowl-
edge.

• LO 3.3.1: . . . analyze how data representation, storage, security, and transmission
of data involve computational manipulation of information.

• In Big Idea IV: Algorithms:

• LO 4.1.1: . . . develop an algorithm designed to be implemented to run on a
computer.

• LO 4.1.2: . . . express an algorithm in a language.

• LO 4.2.1: . . . explain the difference between algorithms that run in a reasonable
time and those that do not run in a reasonable time.

• LO 4.2.2: . . . explain the difference between solvable and unsolvable problems
in computer science.

• LO 4.2.4: . . . evaluate algorithms analytically and empirically for efficiency,
correctness, and clarity.

• In Big Idea V: Programming:

• LO 5.1.1: . . . develop a program for creative expression, to satisfy personal
curiosity or to create new knowledge.

• LO 5.1.2: . . . develop a correct program to solve problems.

• LO 5.2.1: . . . explain how programs implement algorithms.

• LO 5.3.1: . . . use abstraction to manage complexity in programs.
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• LO 5.5.1: . . . employ appropriate mathematical and logical concepts in program-
ming.

• In Big Idea VI: The Internet:

• LO 6.1.1: . . . explain the abstractions in the Internet and how the Internet func-
tions.

CHANGES IN THE FOURTH EDITION
1. We fixed lots of bugs that our crack bug-finders identified in the third edition.

2. We changed most of the pictures in the book – they were getting stale, and our kids
wanted us to not use as many pictures of them.

3. We added more end-of-chapter questions.

4. We added a whole new chapter, on text as a medium and manipulating strings
(to make sentences, koans, and codes). This isn’t a necessary chapter (e.g., we
introduce for and if statements, but we didn’t remove the introductions later in
the book). For some of our teachers, playing with text with shorter loops (iterating
over all the characters in a sentence is typically smaller than the thousands of pixels
in a picture) is a more comfortable way to start.

5. We gave up fighting the battle of inventing a Web scraper that could beat out the
changes that Facebook made, which kept breaking the one we put in the 3rd edition
and then kept updating on the teacher’s website2. Instead, we wrote examples in
this book for processing CSV (Comma-Separated Values), a common format for
sharing data on the Internet. We parse the CSV from a file using string processing,
then using the CSV library in Python, and then accessing the data by URL.

6. We added some new edge detection code which is shorter and simpler to understand.

7. We added more with turtles: creating dancing turtles (using sleep from the time
module to pause execution) and recursive patterns.

8. We updated the book to use the latest features in JES, which include those that
reduce the need to use full pathnames (a problem identified by Stephen Edwards
and his students in their SIGCSE 2014 paper [38]).

CHANGES IN THE THIRD EDITION
1. General freshening of the references, for example Netscape Navigator and 40 Gb

hard disks are so 2005.

2. Introduced more computer science terms (briefly) earlier in the book, such as algo-
rithm, identifier, and local and global scope.

3. A more thorough presentation of conditionals, earlier in the book, including else
and elif.

2http://home.cc.gatech.edu/mediaComp and http://www.mediacomputation.org
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4. A section on functions and parameters, with a discussion of when to use return and
when it isn’t necessary.

5. More explanation of how variables work, especially with respect to objects.

6. More on mirroring pictures, with a more generalized example.

7. Updated the Web examples with references to accessing common, modern sites.

8. More on the differences between image formats.

9. Removed some of the more trivial Turtle examples in Chapter 16, and adding a
couple of sophisticated examples with turtles.

10. Updated the section on hardware and networks to reference newer hardware, includ-
ing multi core processors and cell phones.

11. Made clearer what can be done in Jython and CPython, in comparison with JES.

12. Added another steganography-related example.

13. Added figures and additional explanation for the areas that reviewers saw as con-
fusing for students.
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Changes in the
Second Edition

1. We increased our coverage of the Python language, including more of the standard
libraries, global scope, and additional control structures.

2. There is an increased emphasis on abstraction and on creating reusable code.

3. The movie chapter includes instructions on how to create standard AVI and Quick-
Time movies for sharing with others.

4. We increased the number of exercises at the end of each chapter significantly.

5. All indices start with zero instead of one. By starting with zero as the first index
instead of one, we are more compatible with standard Python.

6. We removed the chapter on creating a user interface in Swing and the one on
JavaScript.

7. We rewrote the chapter on design and debugging to include design and testing
examples, with an emphasis on maintenance.

8. We split the chapter on creating and modifying text into two chapters. We added
an example of steganography.

9. We split the language paradigms chapter (styles of programming) into two chapters
to provide more content on functional (such as non mutable functions) and object-
oriented programming (e.g., introducing objects through use of Logo-like turtles).

10. We have added in coverage of concepts that many teachers want to touch on in their
introductory course, such as binary representations of negative numbers.

11. Overall, we have made the English clearer and removed some unnecessary detail.
(We hope.)

12. There is no longer a CD in the back of the book. The latest versions of all software
and materials can be found at http://mediacomputation.org.
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Preface to the First Edition

Research in computing education makes it clear that one doesn’t just “learn to program.”
One learns to program something [5, 22], and the motivation to do that something can
make the difference between learning and not learning to program [8]. The challenge
for any teacher is to pick a something that is a powerful enough motivator.

People want to communicate. We are social creatures and the desire to communicate
is one of our primal motivations. Increasingly, the computer is used as a tool for com-
munication even more than a tool for calculation. Virtually all published text, images,
sounds, music, and movies today are prepared using computing technology.

This book is about teaching people to program in order to communicate with digital
media. The book focuses on how to manipulate images, sounds, text, and movies as
professionals might, but with programs written by students. We know that most people
will use professional-grade applications to perform these type of manipulations. But,
knowing how to write your own programs means that you can do more than what your
current application allows you to do. Your power of expression is not limited by your
application software.

It may also be true that knowing how the algorithms in a media applications work
allows you to use them better or to move from one application to the next more easily.
If your focus in an application is on what menu item does what, every application is
different. But if your focus is on moving or coloring the pixels in the way you want,
then maybe it’s easier to get past the menu items and focus on what you want to say.

This book is not just about programming in media. Media-manipulation programs
can be hard to write or may behave in unexpected ways. Natural questions arise, like
“Why is the same image filter faster in Photoshop?” and “That was hard to debug—Are
there ways of writing programs that are easier to debug?” Answering questions like
these is what computer scientists do. There are several chapters at the end of the book
that are about computing, not just programming. The final chapters go beyond media
manipulation to more general topics.

The computer is the most amazingly creative device that humans have ever conceived.
It is completely made up of mind-stuff. The notion “Don’t just dream it, be it” is really
possible on a computer. If you can imagine it, you can make it “real” on the computer.
Playing with programming can be and should be enormous fun.

OBJECTIVES, APPROACH AND ORGANIZATION
The curricular content of this book meets the requirements of the “imperative-first”
approach described in theACM/IEEE Computing Curriculum 2001 standards document
[4]. The book starts with a focus on fundamental programming constructs: assignments,
sequential operations, iteration, conditionals, and defining functions. Abstractions

xxi
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(e.g., algorithmic complexity, program efficiency, computer organization, hierarchi-
cal decomposition, recursion, and object-oriented programming) are emphasized later,
after the students have a context for understanding them.

This unusual ordering is based on the findings of research in the learning sciences.
Memory is associative. We remember new things based on what we associate them with.
People can learn concepts and skills on the premise that they will be useful some day but
the concepts and skills will be related only to the premises. The result has been described
as “brittle knowledge” [9]—the kind of knowledge that gets you through the exam but
is promptly forgotten because it doesn’t relate to anything but being in that class.

Concepts and skills are best remembered if they can be related to many different
ideas or to ideas that come up in one’s everyday life. If we want students to gain
transferable knowledge (knowledge that can be applied in new situations), we have to
help them to relate new knowledge to more general problems, so that the memories get
indexed in ways that associate with those kinds of problems [26]. In this book, we teach
with concrete experiences that students can explore and relate to (e.g., conditionals for
removing red-eye in pictures) and later lay abstractions on top of them (e.g., achieving
the same goal using recursion or functional filters and maps).

We know that starting from the abstractions doesn’t really work for computing stu-
dents. Ann Fleury has shown that students in introductory computing courses just don’t
buy what we tell them about encapsulation and reuse (e.g., [13]). Students prefer sim-
pler code that they can trace easily and they actually think that such code is better. It
takes time and experience for students to realize that there is value in well-designed
systems. Without experience, it’s very difficult for students to learn the abstractions.

The media computation approach used in this book starts from what many people
use computers for: image manipulation, exploring digital music, viewing and creating
Web pages, and making videos. We then explain programming and computing in terms
of these activities. We want students to visit Amazon (for example) and think, “Here’s
a catalog Web site—and I know that these are implemented with a database and a
set of programs that format the database entries as Web pages.” We want students to
use Adobe Photoshop and GIMP and think about how their image filters are actually
manipulating red, green, and blue components of pixels. Starting from a relevant context
makes transfer of knowledge and skills more likely. It also makes the examples more
interesting and motivating, which helps with keeping students in the class.

The media computation approach spends about two-thirds of the time on giving
students experiences with a variety of media in contexts that they find motivating. After
that two-thirds, though, they naturally start to ask questions about computing. “Why is
it that Photoshop is faster than my program?” and “Movie code is slow—How slow do
programs get?” are typical. At that point, we introduce the abstractions and the valuable
insights from computer science that answer their questions. That’s what the last part of
this book is about.

A different body of research in computing education explores why withdrawal or
failure rates in introductory computing are so high. One common theme is that com-
puting courses seem “irrelevant” and unnecessarily focus on “tedious details” such as
efficiency [31, 1]. A communications context is perceived as relevant by students (as
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they tell us in surveys and interviews [15, 27]). The relevant context is part of the
explanation for the success we have had with retention in the Georgia Tech course for
which this book was written.

The late entrance of abstraction isn’t the only unusual ordering in this approach. We
start using arrays and matrices in Chapter 3, in our first significant programs. Typically,
introductory computing courses push arrays off until later, because they are obviously
more complicated than variables with simple values. A relevant and concrete context
is very powerful [22]. We find that students have no problem manipulating matrices of
pixels in a picture.

The rate of students withdrawing from introductory computing courses or receiving
a D or F grade (commonly called the WDF rate) is reported in the 30–50% range or
even higher. A recent international survey of failure rates in introductory computing
courses reported that the average failure rate among 54 U.S. institutions was 33% and
among 17 international institutions was 17% [6]. At Georgia Tech, from 2000 to 2002,
we had an average WDF rate of 28% in the introductory course required for all majors.
We used the first edition of this text in our course Introduction to Media Computation.
Our first pilot offering of the course had 121 students, no computing or engineering
majors, and two-thirds of the students were female. Our WDF rate was 11.5%.

Over the next two years (Spring 2003 to Fall 2005), the average WDF rate at Georgia
Tech (across multiple instructors, and literally thousands of students) was 15% [21].
Actually, the 28% prior WDF rate and 15% current WDF rate are incomparable, since
all majors took the first course and only liberal arts, architecture, and management
majors took the new course. Individual majors have much more dramatic changes.
Management majors, for example, had a 51.5% WDF rate from 1999 to 2003 with the
earlier course, and had a 11.2% failure rate in the first two years of the new course [21].
Since the first edition of this book was published, several other schools have adopted
and adapted this approach and evaluated their result. All of them have reported similar,
dramatic improvements in success rates [37, 36].

Ways to Use This Book
This book represents what we teach at Georgia Tech in pretty much the same order.
Individual teachers may skip some sections (e.g., the section on additive synthesis,
MIDI, and MP3), but all of the content here has been tested with our students.

However, this material has been used in many other ways.

• A short introduction to computing could be taught with just Chapters 2 (intro-
duction to programming) and 3 (introduction to image processing), perhaps with
some material from Chapters 4 and 5. We have taught even single-day workshops
on media computation using just this material.

• Chapters 6 through 8 basically replicate the computer science concepts from
Chapters 3 through 5 but in the context of sounds rather than images. We find
the replication useful—some students seem to relate better to the concepts of
iteration and conditionals when working with one medium than with the other.
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Further, it gives us the opportunity to point out that the same algorithm can have
similar effects in different media (e.g., scaling a picture up or down and shifting a
sound higher or lower in pitch are the same algorithm). But it could certainly be
skipped to save time.

• Chapter 12 (on movies) introduces no new programming or computing concepts.
While motivational, movie processing could be skipped to save time.

• We recommend getting to at least some of the chapters in the last unit, in order to
lead students into thinking about computing and programming in a more abstract
manner, but clearly not all of the chapters have to be covered.

Python and Jython
The programming language used in this book is Python. Python has been described as
“executable pseudo-code.” We have found that both computer science majors and non
majors can learn Python. Since Python is actually used for communications tasks (e.g.,
Web site development), it’s a relevant language for an introductory computing course.
For example, job advertisements posted to the Python Web site (http://www.python.
org) show that companies like Google and Industrial Light & Magic hire Python pro-
grammers.

The specific dialect of Python used in this book is Jython (http://www.jython.
org). Jython is Python. The differences between Python (normally implemented in C)
and Jython (which is implemented in Java) are akin to the differences between any
two language implementations (e.g., Microsoft vs. GNU C++ implementations)—the
basic language is exactly the same, with some library and details differences that most
students will never notice.

TYPOGRAPHICAL NOTATIONS
Examples of Python code look like this: x = x + 1. Longer examples look like this:

def helloWorld ():
print "Hello , world!"

When showing something that the user types in with Python’s response, it will have
a similar font and style, but the user’s typing will appear after a Python prompt (»>):

>>> print 3 + 4
7

User interface components of JES (Jython Environment for Students) will be spec-
ified using a small caps font, like Save menu item and the Load button.

There are several special kinds of sidebars that you’ll find in the book.

Computer Science Idea: An Example Idea

Key computer science concepts appear like this.
�
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Common Bug: An Example Common Bug

Common things that can cause your program to fail appear like this.
�

Debugging Tip: An Example Debugging Tip

If there’s a good way to keep a bug from creeping into your programs in the first place,
it’s highlighted here.

�

Making It Work Tip: An Example How to Make It Work

Best practices or techniques that really help are highlighted like this.
�

INSTRUCTOR RESOURCES
The instructor resources are available on the author’s website http://
mediacomputation.org or the Pearson Education’s Instructor Resource Center at
www.pearsonhighered.com/guzdial:

• PowerPoint� Presentation slides
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